Características e variedades de gases enclatrados em hidratos de gás natural recuperados no Lago Baikal
Scientific Reports volume 13, Número do artigo: 4440 (2023) Citar este artigo
511 Acessos
1 Citações
3 Altmétrica
Detalhes das métricas
São relatadas composições isotópicas moleculares e estáveis de gases ligados a hidratos coletados de 59 locais contendo hidratos entre 2005 e 2019 nas sub-bacias sul e central do Lago Baikal. O δ2H do metano ligado ao hidrato distribui-se entre − 310‰ e − 270‰, cerca de 120‰ inferior ao seu valor no ambiente marinho, devido à diferença de δ2H entre a água do lago e a água do mar. Os gases ligados a hidratos são originários de fontes de gases microbianos (primários e secundários), termogênicos e mistos. Hidratos gasosos com etano microbiano (δ13C: − 60‰, δ2H: entre − 310‰ e − 250‰) foram recuperados em aproximadamente um terço dos locais totais, e suas composições isotópicas estáveis foram menores do que as do etano termogênico (δ13C: − 25‰, δ2H: − 210‰). O baixo δ2H do etano, que raramente foi relatado, sugere pela primeira vez que a água do lago com baixas proporções de isótopos de hidrogênio afeta o processo de formação do etano microbiano, bem como do metano. Hidratos de estrutura II contendo metano e etano enclatrados foram coletados em oito locais. No gás termogênico, os hidrocarbonetos mais pesados que o etano são biodegradados, resultando em um sistema único de mistura de gases metano-etano. A decomposição e recristalização dos hidratos que enclatraram metano e etano resultaram na formação de hidratos de estrutura II devido ao enriquecimento de etano.
Os hidrocarbonetos enclatrados com hidratos de gás natural ocorrem em sedimentos marinhos/lacustres e em camadas subpermafrost. Os hidratos de gás natural não são apenas um potencial recurso energético futuro1,2,3,4, mas também um grande reservatório de metano (C1), o segundo gás de efeito estufa mais importante5,6. Os hidratos de gás são compostos cristalinos nos quais as moléculas hóspedes são enclatradas em gaiolas de água construídas por ligações de hidrogênio. As diferenças na estrutura cristalina causadas pela combinação de gaiolas de diferentes tamanhos afetam suas propriedades físico-químicas, como número de hidratação, ocupação das gaiolas e calor de dissociação. Três estruturas cristalográficas de hidratos de gás natural foram identificadas como: estrutura cúbica I (sI), estrutura cúbica II (sII) e estrutura hexagonal H (sH)7,8. sI é composto por gaiolas dodecaédricas (512) e tetracaidecaédricas (51262), enquanto sII é composto por gaiolas 512 e hexacaidecaédricas (51264). sH tem uma grande gaiola icosaédrica (51268) em sua célula unitária e pode encapsular moléculas hóspedes maiores.
Natural hydrocarbon gases can be primarily classified as biogenic or abiogenic gases. Biogenic gases are further divided into two types: microbial and thermogenic. Microbial gases mainly consist of C1 produced under anaerobic conditions by methanogens classified as archaea, and two pathways are known: CO2 reduction and methyl-type fermentation. In contrast, thermogenic gases are produced by the thermal cracking of organic matter in deep sediment layers and contain heavier hydrocarbons, such as ethane (C2), propane (C3), and butane (C4). Additionally, secondary microbial gases produced by microbes during biodegradation of petroleum appear more abundant than primary microbial gases9. To estimate the origin of natural hydrocarbon gases, diagrams have been proposed and refined using the molecular ratio of heavier hydrocarbons to C1 and their carbon isotope ratios10,11,12,20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e682">13. Recentemente, uma ferramenta baseada na web foi desenvolvida para determinar a origem do gás natural usando modelos de aprendizado de máquina14.
C1 é o principal componente dos gases convidados em hidratos de gás natural encontrados em sedimentos marinhos/lacustres em todo o mundo. Compreende principalmente C1 microbiano da redução de CO2, com muito poucos outros componentes de hidrocarbonetos, como C2 e C3, que geralmente compreendem menos de 0,1%15,16,17,18,19. Hidratos C1 puros formam sI; assim, a maioria dos hidratos de gás natural encontrados até o momento pertencem a sI15.
Empirical diagrams of hydrate-bound gases. (a) C1/(C2 + C3) plotted against C1 δ13C, based on the classification of Milkov and Etiope20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e941">13; (b) C1 δ2H plotted against C1 δ13C, based on the classification of Milkov and Etiope20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e957"13; and (c) C2 δ13C plotted against C1 δ13C, based on the classification of Milkov15. The data for Malenky, Bolshoy, Malyutka, P-2, K-0, K-2 and Goloustnoe are sourced partly from Hachikubo et al.33. The data for Kedr and Kedr-2 are sourced partly from Hachikubo et al.41./p> Figure 2a shows the relationship between C1 δ13C and C1/(C2 + C3) plotted in the empirical diagram20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1064"13. More than 20 of the 60 total sites have C1 δ13C between − 68‰ and − 65‰ and C1/(C2 + C3) concentrated around 1000–5000, which means that microbial gas is enclathrated in more than one-third of the hydrate-bearing sites in Lake Baikal. However, along the mixing line from the microbial to thermogenic regions, C1 δ13C increases with a decrease in C1/(C2 + C3), passing through the mixed region of microbial and thermogenic gases to thermogenic gas (e.g., K-4, PosolBank, Kedr, and Kedr-2). For the eight sII hydrate data points, C1/(C2 + C3) is nearly constant at 6–7. Furthermore, C1 δ13C seems independent of the crystallographic structure at the same sites but differs considerably in K-3 and K-pockmark. This is because the hydrate-bearing sediment cores are different, even at the same site, indicating that the characteristics of the hydrate-bound gas can change markedly with slight differences in location. Gorevoy Utes43,44 is one of the two oil seep sites and plots in the field of secondary microbial gas (Fig. 2a)9. Another point, ZelenSeep, also plots near the Gorevoy Utes. Most of the data plotted for the thermogenic origin overlap with the field of secondary microbial gas./p> Figure 2b shows the relationship between C1 δ13C and C1 δ2H, which is also plotted in an empirical diagram20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1130">13. The isotopic fractionation of C1 between the gas and hydrate phases is negligible when considering gas origins using a diagram45. C1 δ13C tends to increase with C1 δ2H. In a diagram by Whiticar12, hydrate-bound C1 in Lake Baikal is interpreted to be of microbial origin via methyl-type fermentation31,32,33,46. However, the latest diagram by Milkov and Etiope20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1165"13 shows that most of the C1 δ13C values below − 60‰ overlap completely with the microbial origin via CO2 reduction and may possibly be of an early mature origin. Therefore, it is difficult to determine the origin of C1 in Fig. 2b./p> The C1 δ2H of hydrate-bound gas in marine sediments is generally concentrated between approximately − 200‰ to − 190‰ for microbial gas and is greater for thermogenic gas, reaching approximately − 140‰ for gas hydrates retrieved offshore of Vancouver Island and Costa Rica15. The distribution of C1 δ2H of the thermogenic gas ranges from − 300‰ to − 100‰11 and from − 350‰ to − 100‰20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1586"13. In addition, C1 δ2H tends to increase with C1 δ13C11,12. The factors that determine the C1 δ2H of thermogenic gas have not yet been clarified; however, it can be assumed that hydrogen isotope exchange occurs between C1 and environmental water. Based on the effect of temperature on the hydrogen isotope fractionation between C1 and hydrogen, and between hydrogen and water51, the hydrogen isotope fractionation between C1 and water can be expected to be smaller at higher temperatures. If the thermogenic gas produced by the decomposition of organic matter exchanges isotopically with environmental water during decomposition, the C1 δ2H of thermogenic gas in the deep sediment layers becomes greater than that of microbial gas produced in shallower sediment layers./p> Although little information is available on microbial C3, a mechanism has been proposed by Hinrichs et al. for its formation from acetate and hydrogen58, in which it has been noted that C3 δ13C was greater than C2 δ13C, and Fig. 3b satisfies this relationship. In the area of microbial C2 where C2 δ13C is below − 42‰, C3 δ13C is also relatively low, ranging from − 40‰ to − 30‰, indicating that microbial C3 is more depleted in20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1975"13C than thermogenic C3./p> 2.0.CO;2" data-track-action="article reference" href="https://doi.org/10.1130%2F0091-7613%282002%29030%3C0631%3ASMVAMS%3E2.0.CO%3B2" aria-label="Article reference 28" data-doi="10.1130/0091-7613(2002)0302.0.CO;2"Article ADS Google Scholar /p>